论文标题
CL4CTR:CTR预测的对比度学习框架
CL4CTR: A Contrastive Learning Framework for CTR Prediction
论文作者
论文摘要
许多点击率(CTR)预测的工作重点是设计高级体系结构来对复杂的特征交互进行建模,但忽略了特征表示学习的重要性,例如,为每个功能采用普通的嵌入层,从而导致了亚最佳特征表现形式,从而使CTR预测性较低。例如,在标准监督的学习设置中少考虑了许多CTR任务中大多数功能的低频功能,从而导致了次优特征表示。在本文中,我们介绍了自制的学习,以直接产生高质量的特征表示形式,并为CTR(CL4CTR)框架提出了模型 - 不合时宜的对比度学习,该框架由三个自我监督的学习信号组成,以正常化特征表示学习:对比度损失,功能一致性和现场统一性。对比模块首先通过数据增强构建正特征对,然后通过对比度损耗将每个正特征对表示之间的距离最小化。特征对齐约束会迫使来自同一场的特征的表示,并且场均匀性约束迫使来自不同场的特征的表示形式要远。广泛的实验验证CL4CTR是否在四个数据集上实现了最佳性能,并且具有出色的有效性和与各种代表性基线的兼容性。
Many Click-Through Rate (CTR) prediction works focused on designing advanced architectures to model complex feature interactions but neglected the importance of feature representation learning, e.g., adopting a plain embedding layer for each feature, which results in sub-optimal feature representations and thus inferior CTR prediction performance. For instance, low frequency features, which account for the majority of features in many CTR tasks, are less considered in standard supervised learning settings, leading to sub-optimal feature representations. In this paper, we introduce self-supervised learning to produce high-quality feature representations directly and propose a model-agnostic Contrastive Learning for CTR (CL4CTR) framework consisting of three self-supervised learning signals to regularize the feature representation learning: contrastive loss, feature alignment, and field uniformity. The contrastive module first constructs positive feature pairs by data augmentation and then minimizes the distance between the representations of each positive feature pair by the contrastive loss. The feature alignment constraint forces the representations of features from the same field to be close, and the field uniformity constraint forces the representations of features from different fields to be distant. Extensive experiments verify that CL4CTR achieves the best performance on four datasets and has excellent effectiveness and compatibility with various representative baselines.