论文标题

结构引导的有效和时间延迟连接网络,用于揭示脑疾病机制

A Structure-guided Effective and Temporal-lag Connectivity Network for Revealing Brain Disorder Mechanisms

论文作者

Xia, Zhengwang, Zhou, Tao, Mamoon, Saqib, Alfakih, Amani, Lu, Jianfeng

论文摘要

大脑网络为诊断许多脑部疾病提供了重要的见解,以及如何有效建模大脑结构已成为脑成像分析领域的核心问题之一。最近,已经提出了各种计算方法来估计大脑区域之间的因果关系(即有效的连通性)。与传统的基于相关的方法相比,有效的连通性可以提供信息流的方向,这可能为诊断脑部疾病的诊断提供其他信息。但是,现有方法要么忽略了以下事实:跨大脑区域的信息传输中存在时间延迟,要么简单地将所有大脑区域之间的时间延迟值设置为固定值。为了克服这些问题,我们设计了一个有效的颞叶神经网络(称为ETLN),以同时推断出大脑区域之间的因果关系和颞叶值,可以以端到端的方式对其进行训练。此外,我们还引入了三种机制,以更好地指导大脑网络的建模。关于阿尔茨海默氏病神经影像倡议(ADNI)数据库的评估结果证明了该方法的有效性。

Brain network provides important insights for the diagnosis of many brain disorders, and how to effectively model the brain structure has become one of the core issues in the domain of brain imaging analysis. Recently, various computational methods have been proposed to estimate the causal relationship (i.e., effective connectivity) between brain regions. Compared with traditional correlation-based methods, effective connectivity can provide the direction of information flow, which may provide additional information for the diagnosis of brain diseases. However, existing methods either ignore the fact that there is a temporal-lag in the information transmission across brain regions, or simply set the temporal-lag value between all brain regions to a fixed value. To overcome these issues, we design an effective temporal-lag neural network (termed ETLN) to simultaneously infer the causal relationships and the temporal-lag values between brain regions, which can be trained in an end-to-end manner. In addition, we also introduce three mechanisms to better guide the modeling of brain networks. The evaluation results on the Alzheimer's Disease Neuroimaging Initiative (ADNI) database demonstrate the effectiveness of the proposed method.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源