论文标题

供应链物流应用程序的量子神经网络

Quantum Neural Networks for a Supply Chain Logistics Application

论文作者

Correll, Randall, Weinberg, Sean J., Sanches, Fabio, Ide, Takanori, Suzuki, Takafumi

论文摘要

适用于实际应用的大小的问题实例在嘈杂的中间量子量子(NISQ)期间不可能解决(几乎)纯量子算法。但是,混合经典量子算法具有潜力,可以在更大的问题实例上实现良好的性能。我们研究了一种关于重要性问题的混合算法:供应链物流的车辆路线与多辆卡车和复杂的需求结构。我们使用带有嵌入式量子电路的神经网络使用增强学习。在这样的神经网络中,必须将高维功能向量投射到较小的向量,以适应​​NISQ硬件量子数的限制。但是,我们使用多头注意机制,即使在古典机器学习中,这种预测也是自然而可取的。我们考虑来自汽车领域公司卡车路线物流的数据,并通过将我们的方法分解为小型卡车团队来应用我们的方法,我们发现结果可与人类卡车分配相当。

Problem instances of a size suitable for practical applications are not likely to be addressed during the noisy intermediate-scale quantum (NISQ) period with (almost) pure quantum algorithms. Hybrid classical-quantum algorithms have potential, however, to achieve good performance on much larger problem instances. We investigate one such hybrid algorithm on a problem of substantial importance: vehicle routing for supply chain logistics with multiple trucks and complex demand structure. We use reinforcement learning with neural networks with embedded quantum circuits. In such neural networks, projecting high-dimensional feature vectors down to smaller vectors is necessary to accommodate restrictions on the number of qubits of NISQ hardware. However, we use a multi-head attention mechanism where, even in classical machine learning, such projections are natural and desirable. We consider data from the truck routing logistics of a company in the automotive sector, and apply our methodology by decomposing into small teams of trucks, and we find results comparable to human truck assignment.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源