论文标题

Newman对分区功能的猜想Modulo Integer至少两个不同的素数除外

Newman's conjecture for the partition function modulo integers with at least two distinct prime divisors

论文作者

Choi, Dohoon, Lee, Youngmin

论文摘要

令$ m $为正整数,$ p(n)$是正整数$ n $的分区数量。纽曼的猜想断言,对于每个整数$ r $,都有无限的正整数$ n $,因此\ [p(n)\ equiv r \ pmod {m}。 \]对于一个正整数$ d $,让$ b_ {d} $是一组正整数$ m $,使得$ m $的prime除数为$ d $。在本文中,我们证明,对于每个正整数$ d $,纽曼猜想在$ b_ {d} $中持有的正整数$ m $的密度为$ 1 $。此外,我们研究了Newman的猜想的类似物,该猜想对Nebentypus的$γ_0(N)$上的弱塑形模块化形式,这适用于$ t $ core-core-core-core-core分区和具有$ h $ colors的广义Frobenius分区。

Let $M$ be a positive integer and $p(n)$ be the number of partitions of a positive integer $n$. Newman's Conjecture asserts that for each integer $r$, there are infinitely many positive integers $n$ such that \[ p(n)\equiv r \pmod{M}. \] For a positive integer $d$, let $B_{d}$ be the set of positive integers $M$ such that the number of prime divisors of $M$ is $d$. In this paper, we prove that for each positive integer $d$, the density of the set of positive integers $M$ for which Newman's Conjecture holds in $B_{d}$ is $1$. Furthermore, we study an analogue of Newman's Conjecture for weakly holomorphic modular forms on $Γ_0(N)$ with nebentypus, and this applies to $t$-core partitions and generalized Frobenius partitions with $h$-colors.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源