论文标题

物理知情的机器学习算法,用于鉴定二维原子晶体

Physically informed machine-learning algorithms for the identification of two-dimensional atomic crystals

论文作者

Zichi, Laura, Liu, Tianci, Drueke, Elizabeth, Zhao, Liuyan, Xu, Gongjun

论文摘要

石墨烯单层在2004年首次孤立,在下一代电子,光电子和能量存储中显示出独特的特性和有希望的技术潜力。用于制造石墨烯的简单但有效的方法,机械剥落,然后进行光学显微镜检查,以发现更多的二维(2D)原子晶体,这些晶体显示出与大量同类物的不同物理特性,开放了新的材料研究时代。但是,手动检查光学图像以识别2D薄片具有低通量的明确缺点,因此对于2D样品的任何规模应用,Albert的物理特性都是不切实际的。最近将高性能的机器学习(通常是深度学习)与光学显微镜整合到了加速的薄片鉴定。尽管深度学习算法的进步,其高计算复杂性,较大的数据集要求以及更重要的是,不透明的决策过程限制了其访问性。作为替代方案,我们研究了更透明的基于树的机器学习算法,具有模仿颜色对比的特征,以自动鉴定在不同的光学设置下的去角质2D原子晶体(例如Mose2)。我们将这些基于树的算法的决策的成功和物理性质与卷积神经网络(CNN)的重新连接的成功和物理性质进行了比较。我们表明,决策树,提高决策树和随机森林可以成功地对薄材料的光学图像进行透明决策,这些决策依赖物理图像特征,并且不会遭受极端过度拟合和较大的数据集要求。

First isolated in 2004, graphene monolayers display unique properties and promising technological potential in next generation electronics, optoelectronics, and energy storage. The simple yet effective methodology, mechanical exfoliation followed by optical microscopy inspection, used for fabricating graphene has been exploited to discover many more two-dimensional (2D) atomic crystals which show distinct physical properties from their bulk counterpart, opening the new era of materials research. However, manual inspection of optical images to identify 2D flakes has the clear drawback of low-throughput and hence is impractical for any scale-up applications of 2D samples, albert their fascinating physical properties. Recent integration of high-performance machine-learning, usually deep learning, techniques with optical microscopy has accelerated flake identification. Despite the advancement brought by deep learning algorithms, their high computational complexities, large dataset requirements, and more importantly, opaque decision-making processes limit their accessibilities. As an alternative, we investigate more transparent tree-based machine-learning algorithms with features that mimic color contrast for the automated identification of exfoliated 2D atomic crystals (e.g., MoSe2) under different optical settings. We compare the success and physical nature of the decisions of these tree-based algorithms to ResNet, a Convolutional Neural Network (CNN). We show that decision trees, gradient boosted decision trees, and random forests can successfully classify optical images of thin materials with transparent decisions that rely on physical image features and do not suffer from extreme overfitting and large dataset requirements.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源