论文标题
在腿部机器人的地形运动上
On Terrain-Aware Locomotion for Legged Robots
论文作者
论文摘要
(简化的摘要)要在动态全身运动中取得突破,腿部机器人必须意识到地形。地形感知的运动(TAL)意味着机器人可以用其传感器感知地形,并且可以根据这些信息做出决定。本文从本体感知和外部视角提出了TAL策略。这些策略是在运动计划,控制和州估计以及使用优化和学习技术的层面上实施的。第一部分是在全身控制(WBC)级别的TAL策略上进行。我们引入了一个被动WBC(PWBC)框架,该框架使机器人在考虑到地形几何形状(倾斜度)和摩擦特性的同时,可以稳定和行走在具有挑战性的地形上。 PWBC依赖于严格的接触假设,这使其仅适用于僵硬的地形。结果,我们引入了柔软的地形适应性和依从性估计(姿势),这是一种软地形适应算法,它概括了刚性的地形以外。论文的第二部分重点是基于视觉的TAL策略。我们提出了基于远见的地形运动(Vital),它是一种在线规划策略,它根据机器人功能选择了立足点,并且机器人姿势使机器人成功达到这些立足点的机会最大化。 Vital依靠一组机器人技能,这些机器人技能表征了机器人及其腿部的功能。技能包括机器人评估地形几何形状,避免腿部碰撞并避免达到运动学限制的能力。我们的策略基于优化和学习方法,并在模拟和实验中在HYQ和HYQREAL上进行了验证。我们表明,借助这些策略,我们可以将动态的腿部机器人推向完全自主和地形的一步。
(Simplified Abstract) To accomplish breakthroughs in dynamic whole-body locomotion, legged robots have to be terrain aware. Terrain-Aware Locomotion (TAL) implies that the robot can perceive the terrain with its sensors, and can take decisions based on this information. This thesis presents TAL strategies both from a proprioceptive and an exteroceptive perspective. The strategies are implemented at the level of locomotion planning, control, and state estimation, and using optimization and learning techniques. The first part is on TAL strategies at the Whole-Body Control (WBC) level. We introduce a passive WBC (pWBC) framework that allows the robot to stabilize and walk over challenging terrain while taking into account the terrain geometry (inclination) and friction properties. The pWBC relies on rigid contact assumptions which makes it suitable only for stiff terrain. As a consequence, we introduce Soft Terrain Adaptation aNd Compliance Estimation (STANCE) which is a soft terrain adaptation algorithm that generalizes beyond rigid terrain. The second part of the thesis focuses on vision-based TAL strategies. We present Vision-Based Terrain-Aware Locomotion (ViTAL) which is an online planning strategy that selects the footholds based on the robot capabilities, and the robot pose that maximizes the chances of the robot succeeding in reaching these footholds. ViTAL relies on a set of robot skills that characterizes the capabilities of the robot and its legs. The skills include the robot's ability to assess the terrain's geometry, avoid leg collisions, and avoid reaching kinematic limits. Our strategies are based on optimization and learning methods and are validated on HyQ and HyQReal in simulation and experiment. We show that with the help of these strategies, we can push dynamic legged robots one step closer to being fully autonomous and terrain aware.