论文标题

JAX-FEM:一种可区分的GPU加速3D有限元求解器,用于自动逆设计和机械数据科学

JAX-FEM: A differentiable GPU-accelerated 3D finite element solver for automatic inverse design and mechanistic data science

论文作者

Xue, Tianju, Liao, Shuheng, Gan, Zhengtao, Park, Chanwook, Xie, Xiaoyu, Liu, Wing Kam, Cao, Jian

论文摘要

本文介绍了JAX-FEM,这是一种开源可区分的有限元方法(FEM)库。 JAX-FEM在Google Jax之上构建,该库是一个着重于高性能数值计算的新兴机器学习库,使用纯Python实施,同时可扩展以有效地解决中等至大尺寸的问题。例如,在具有770万度自由度的3D拉伸加载问题中,与商业FEM代码相比,与平台相比,带有GPU的JAX-FEM达到了10 $ \ times $加速。除了有效地解决前进问题外,JAX-FEM还采用自动分化技术,以便以全自动的方式解决反问题,而无需手动得出敏感性。表明非线性材料的3D拓扑优化的示例可实现最佳依从性。最后,JAX-FEM是机器学习辅助计算机制的集成平台。我们展示了一个复合材料数据驱动的多尺度计算的示例,其中JAX-FEM提供了从微观数据生成和模型培训到宏观FE计算的多合一解决方案。图书馆的源代码和这些示例与社区共享,以促进计算力学研究。

This paper introduces JAX-FEM, an open-source differentiable finite element method (FEM) library. Constructed on top of Google JAX, a rising machine learning library focusing on high-performance numerical computing, JAX-FEM is implemented with pure Python while scalable to efficiently solve problems with moderate to large sizes. For example, in a 3D tensile loading problem with 7.7 million degrees of freedom, JAX-FEM with GPU achieves around 10$\times$ acceleration compared to a commercial FEM code depending on platform. Beyond efficiently solving forward problems, JAX-FEM employs the automatic differentiation technique so that inverse problems are solved in a fully automatic manner without the need to manually derive sensitivities. Examples of 3D topology optimization of nonlinear materials are shown to achieve optimal compliance. Finally, JAX-FEM is an integrated platform for machine learning-aided computational mechanics. We show an example of data-driven multi-scale computations of a composite material where JAX-FEM provides an all-in-one solution from microscopic data generation and model training to macroscopic FE computations. The source code of the library and these examples are shared with the community to facilitate computational mechanics research.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源