论文标题
爱情地震表面波的逆共振问题
Inverse resonance problem for Love seismic surface waves
论文作者
论文摘要
在本文中,我们解决了半固体的逆共振问题,表面上的压力消失了:羔羊的问题。使用半古典方法,我们能够简化半固体的弹性波方程的三维问题,作为在半线上具有罗宾边界条件的schrödinger方程。我们在相对于波数的谐振数量和位置上获得渐近值。此外,我们证明,从真正的紧凑型电势到合适的整个功能中的jost函数的映射是一对一的,我们产生了算法,以从特征值和共振中检索剪切模量。
In this paper we solve an inverse resonance problem for the half-solid with vanishing stresses on the surface: Lamb's problem. Using a semi-classical approach we are able to simplify this three-dimensional problem of the elastic wave equation for the half-solid as a Schrödinger equation with Robin boundary conditions on the half-line. We obtain asymptotic values on the number and the location of the resonances with respect to the wave number. Moreover, we prove that the mapping from real compactly supported potentials to the Jost functions in a suitable class of entire functions is one-to-one and onto and we produce an algorithm in order to retrieve the shear modulus from the eigenvalues and resonances.