论文标题

Cayley图中的常规套装的注释

A note on regular sets in Cayley graphs

论文作者

Zhang, Junyang, Zhu, Yanhong

论文摘要

图$γ$的顶点的子集$ r $据说为$(κ,τ)$ - 如果$ r $诱导$κ$ regratular subgraph,并且$ r $以外的每个顶点与$ r $ in $ r $ in $ r $的每个顶点恰好相邻。特别是,如果$ r $是$(κ,τ)$ - 有限的$ g $上的一些cayley图,则$ r $称为$(κ,τ)$ - 常规套件$ g $。令$ h $为$ g $的非平凡的普通亚组,$κ$和$τ$每对满足$ 0 \leqκ\ leq | h | -1 $,$ 1 \ leq leq leq leq leq | h | $和$ \ gcd(2,| h | -1)\midκ$。证明(i)如果$τ$甚至是$ h $,则$ h $是$(κ,τ)$ - 常规$ g $; (ii)如果$τ$是奇数的,则$ h $是$(κ,τ)$ - 常规集合$ g $时,并且仅当它是$(0,1)$ - 常规套件的$ g $。

A subset $R$ of the vertex set of a graph $Γ$ is said to be $(κ,τ)$-regular if $R$ induces a $κ$-regular subgraph and every vertex outside $R$ is adjacent to exactly $τ$ vertices in $R$. In particular, if $R$ is a $(κ,τ)$-regular set of some Cayley graph on a finite group $G$, then $R$ is called a $(κ,τ)$-regular set of $G$. Let $H$ be a non-trivial normal subgroup of $G$, and $κ$ and $τ$ a pair of integers satisfying $0\leqκ\leq|H|-1$, $1\leqτ\leq|H|$ and $\gcd(2,|H|-1)\midκ$. It is proved that (i) if $τ$ is even, then $H$ is a $(κ,τ)$-regular set of $G$; (ii) if $τ$ is odd, then $H$ is a $(κ,τ)$-regular set of $G$ if and only if it is a $(0,1)$-regular set of $G$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源