论文标题
带有量规和时间恢复不变性的伪古典系统
Pseudoclassical system with gauge and time-reparametrization invariance
论文作者
论文摘要
我们提出了一个伪古典力学模型,该模型表现出量规对称性和时间反应不变性。因此,一流和二等限制限制了相位空间,而哈密顿量弱消失。我们表明,狄拉克的猜想不存在 - 二级头等约束不是对称发生器 - 仅需要与主要一流约束相关的量规固定条件才能删除量规模棱两可。固定理论等同于费尔米谐波振荡器扩展到边界项。我们在变形量化和Schrodinger表示方法中进行量化,并观察到边界项在正能状态下准备系统。
We present a pseudoclassical mechanics model which exhibits gauge symmetry and time-reparametrization invariance. As such, first- and second-class constraints restrict the phase space, and the Hamiltonian weakly vanishes. We show that the Dirac conjecture does not hold -- the secondary first-class constraint is not a symmetry generator -- and only the gauge fixing condition associated with the primary first-class constraint is needed to remove the gauge ambiguities. The gauge fixed theory is equivalent to the Fermi harmonic oscillator extended by a boundary term. We quantize in the deformation quantization and in the Schrodinger representation approaches and observe that the boundary term prepares the system in the state of positive energy.