论文标题
嵌入软基质中的不合适性超弹性丝的定期颈部
Periodic necking of misfit hyperelastic filaments embedded in a soft matrix
论文作者
论文摘要
颈部不稳定性是材料拉伸衰竭和破裂的前体。一个准载的独立单轴标本通常在单个位置显示颈部,对应于长波长分叉模式。如果局限于基板或嵌入基质中,则相同的细丝可以表现出周期性的颈部,从而产生有限长度的段。虽然已在延性金属丝和薄床单中对周期性不稳定性进行了广泛的研究,但对于高弹性材料中的颈部知之甚少。人们对颈部在新型材料中的作用进行了新的兴趣,以推动制造过程,并解释在3D印刷活性生物学物质中观察到的破碎现象。在这两种情况下,采用J2可塑性的现有框架都没有很好地描述材料,现有研究忽略了通过化学或生物学收缩在这些系统中可能出现的不合适伸展的作用。为了解决这些局限性,我们首先在实验上证明了基质在符合嵌入式细丝的颈部和碎片中的作用。我们的分析分叉分析使用菌株软化的广泛性超弹性模型,解释了实验观察结果,并且与数值预测一致。该分析揭示了3种不同的分叉模式:长波长颈部,恢复了确定标准;在我们的实验中观察到的周期性颈部;以及一个短波长模式,其特征是沿细丝的中心绳子定位,独立于膜与矩阵的刚度比。我们发现,软化系数和细丝不合适的拉伸可以显着影响稳定性阈值和观察到的波长。我们的结果可以指导复合材料的设计和制造,并解释在活性生物材料中观察到的碎片化过程。
The necking instability is a precursor to tensile failure and rupture of materials. A quasistatically loaded free-standing uniaxial specimen typically exhibits necking at a single location, corresponding to a long wavelength bifurcation mode. If confined to a substrate or embedded in a matrix, the same filament can exhibit periodic necking thus creating segments of finite length. While periodic instabilities have been extensively studied in ductile metal filaments and thin sheets, less is known about necking in hyperelastic materials. There is a renewed interest in the role of necking in novel materials to advance fabrication processes and to explain fragmentation phenomena observed in 3D printed active biological matter. In both cases materials are not well described by existing frameworks that employ J2 plasticity, and existing studies ignore the role of misfit stretches that may emerge in these systems through chemical or biological contraction. To address these limitations, we first experimentally demonstrate the role of the matrix on the necking and fragmentation of a compliant embedded filament. Using a strain softening generalized hyperelastic model, our analytical bifurcation analysis explains the experimental observations and agrees with numerical predictions. The analysis reveals 3 distinct bifurcation modes: a long wavelength necking, recovering the Considere criterion; a periodic necking observed in our experiments; and a short wavelength mode characterized by localization along the center cord of the filament and independent of the film-to-matrix stiffness ratio. We find that the softening coefficient and the filament misfit stretch can significantly influence the stability threshold and observed wavelength, respectively. Our results can guide the design and fabrication of composite materials and explain the fragmentation processes observed in active biological materials.