论文标题

与选择和突变I:Fréchet类型的突变适应性

Branching with selection and mutation I: Mutant fitness of Fréchet type

论文作者

Park, Su-Chan, Krug, Joachim, Touzo, Léo, Mörters, Peter

论文摘要

我们研究了受选择和突变的两个随机模型的增长。在我们的模型中,每个人都有一个健身,可以决定其平均后代数字。这些后代中有许多继承了父母的健康状况,但有些是突变体,并从Fréchet分布的吸引力域中的分布中随机取样适应性。我们为这些随机过程的甲次甲级增长的精确率提供了严格的证明,并通过对这种生长的机制进行启发式和数值研究来支持该论点。

We investigate two stochastic models of a growing population subject to selection and mutation. In our models each individual carries a fitness which determines its mean offspring number. Many of these offspring inherit their parent's fitness, but some are mutants and obtain a fitness randomly sampled from a distribution in the domain of attraction of the Fréchet distribution. We give a rigorous proof for the precise rate of superexponential growth of these stochastic processes and support the argument by a heuristic and numerical study of the mechanism underlying this growth.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源