论文标题
在三维拓扑绝缘子和二维抗铁磁材料之间的声子介导的强耦合
Phonon-mediated strong coupling between a three-dimensional topological insulator and a two-dimensional antiferromagnetic material
论文作者
论文摘要
Van der waals抗铁磁和拓扑绝缘子材料为现代光学,电子和自旋设备应用提供了强大的平台。抗铁磁铁(AFM)与拓扑绝缘子(TI)之间的相互作用,如果足够强,则可以提供新兴的混合材料特性,从而使新功能能够超过任何单个材料组成中的可能性。在这项工作中,我们研究了三维(3D)拓扑绝缘子中THZ激发与准二维(2D)抗铁磁材料的强烈耦合,从而导致了新的杂交模式,即表面迪拉克Plason-Phonon-Phonon-MagnononononononliTon。我们发现,3D TI中的表面等离子体极化与2D AFM中的镁极化物之间的相互作用是由3D TI材料中的声子耦合介导的。在3D Ti中传播的电磁波的耦合以一种导致dirac等离子体极性在Ti表面上的分散体与Ti厚度之间的分散剂之间的牢固相关性,从而增强了Ti薄膜的介电常数。结果,可以通过改变Ti的厚度,从而增强了Ti的厚度,从而增强了两种材料的激发之间的耦合强度,从而将表面狄拉克等离子体极性子在Ti中的分散朝着与AFM材料的共振进行调节。这种耦合的强度,导致表面迪拉克等离子体 - phonon-magnon polariton,可以通过在两个极性共振频率下避免的跨层分支之间的分裂幅度来参数化。
Van der Waals antiferromagnetic and topological insulator materials provide powerful platforms for modern optical, electronic, and spintronic devices applications. The interaction between an antiferromagnet (AFM) and a topological insulator (TI), if sufficiently strong, could offer emergent hybrid material properties that enable new functionality exceeding what is possible in any individual material constituent. In this work, we study strong coupling between THz excitations in a three dimensional (3D) topological insulator and a quasi-two dimensional (2D) antiferromagnetic material resulting in a new hybridized mode, namely a surface Dirac plasmon-phonon-magnon polariton. We find that the interaction between a surface Dirac plasmon polariton in the 3D TI and a magnon polariton in the 2D AFM is mediated by the phonon coupling in the 3D TI material. The coupling of phonons with an electromagnetic wave propagating in the 3D TI enhances the permittivity of the TI thin film in a way that results in a strong correlation between the dispersion of Dirac plasmon polaritons on the surfaces of the TI with the thickness of the TI. As a result, the dispersion of surface Dirac plasmon polaritons in the TI can be tuned toward resonance with the magnon polariton in the AFM material by varying the TI's thickness, thereby enhancing the strength of the coupling between the excitations in the two materials. The strength of this coupling, which results in the surface Dirac plasmon-phonon-magnon polariton, can be parameterized by the amplitude of the avoided-crossing splitting between the two polariton branches at the magnon resonance frequency...