论文标题

使用镶嵌物在移动粒子云中计算粒子速度的差分运算符

Computing differential operators of the particle velocity in moving particle clouds using tessellations

论文作者

Maurel-Oujia, Thibault, Matsuda, Keigo, Schneider, Kai

论文摘要

我们提出有限时间测量,以计算二维运动粒子云的点粒子速度的差异,卷曲和速度梯度张量。为此,执行粒子位置的镶嵌以将体积分配给每个粒子。我们介绍了修改后的Voronoi Tessellation,这克服了古典结构的一些缺点。我们使用delaunay单元的重心代替围栏来定义顶点。考虑到随后的两个时刻,可以评估体积的动力学。确定镶嵌细胞的体积变化会产生粒子速度的差异。重组各种速度系数允许计算卷曲甚至速度梯度张量。同样可以计算粒子速度的螺旋性,并且可以量化粒子云的旋转运动。首先,我们评估随机分布粒子的数值精度。我们发现用修改后的镶嵌计算的分歧与确切值之间的差异之间有很强的相关性。此外,我们表明所提出的方法在两个和三个维度的空间和时间上与一阶收敛。然后,我们考虑具有施加幂律能光谱的随机速度场进行的颗粒。我们研究保证给定精度所需的颗粒数。最后,在三维完全发达的各向同性湍流中升级的流体颗粒的应用显示,用于量化粒子云中的自组织及其涡流甚至旋转运动的方法的实用性。

We propose finite-time measures to compute the divergence, the curl and the velocity gradient tensor of the point particle velocity for two- and three-dimensional moving particle clouds. For this purpose, a tessellation of the particle positions is performed to assign a volume to each particle. We introduce a modified Voronoi tessellation which overcomes some drawbacks of the classical construction. Instead of the circumcenter we use the center of gravity of the Delaunay cell for defining the vertices. Considering then two subsequent time instants, the dynamics of the volume can be assessed. Determining the volume change of tessellation cells yields the divergence of the particle velocity. Reorganizing the various velocity coefficients allows computing the curl and even the velocity gradient tensor. The helicity of particle velocity can be likewise computed and swirling motion of particle clouds can be quantified. First we assess the numerical accuracy for randomly distributed particles. We find a strong Pearson correlation between the divergence computed with the the modified tessellation, and the exact value. Moreover, we show that the proposed method converges with first order in space and time in two and three dimensions. Then we consider particles advected with random velocity fields with imposed power-law energy spectra. We study the number of particles necessary to guarantee a given precision. Finally, applications to fluid particles advected in three-dimensional fully developed isotropic turbulence show the utility of the approach for real world applications to quantify self-organization in particle clouds and their vortical or even swirling motion.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源