论文标题

旋转巨大恒星的崩溃,导致黑洞形成和能量超新星

Collapse of rotating massive stars leading to black hole formation and energetic supernovae

论文作者

Fujibayashi, Sho, Sekiguchi, Yuichiro, Shibata, Masaru, Wanajo, Shinya

论文摘要

由于旋转的巨大恒星的核心崩溃,我们探索了爆炸的可能方案,这些恒星的核心崩溃,通过在数值相对性中执行辐射粘性的流动力学模拟来留下黑洞。我们以恒星进化计算中得出的最初条件为中等和快速旋转的紧凑型前崩溃的恒星模型。我们发现,中央黑洞周围形成的磁盘中的粘性加热为流出供电。对于快速旋转的模型,爆炸能量为$ \ gtrsim 3 \ times10^{51} $ erg,它与典型的剥离式玻璃玻璃超新星相当或大于或大于或大,这表明这类超新星的一小部分可能是由黑洞促进的爆炸,由黑洞促销。在模拟结束时,爆炸能量仍在增加,速率为$> 10^{50} $ erg/s,因此,它可以达到$ \ sim10^{52} $ erg。核合成计算表明,$^{56} $ ni的质量总计为$ \ gtrsim 0.1m_ \ odot $,与高爆炸能量一起,满足了宽衬套的IC超级novae的所需量。适度旋转的模型预测$ 0.1M_ \ odot $和爆炸能量$ \ sillesim 10^{51} $ erg的小弹出质量。由于弹出质量较小,这些模型可能会预测短时间的瞬态,而上升时间3 $ -5 d。在存在密集的圆周螺旋培养基的情况下,它可以导致明亮的($ \ sim10^{44} $ erg/s)像超小超新星一样的瞬态。不管模型如何,弹出的电子分数的最低值为$ \ gtrsim 0.4 $,因此,在我们的计算中找不到重$ r $ $ - 过程的合成。

We explore a possible scenario of the explosion as a result of core collapses of rotating massive stars that leave a black hole by performing a radiation-viscous-hydrodynamics simulation in numerical relativity. We take moderately and rapidly rotating compact pre-collapse stellar models derived in stellar evolution calculations as the initial conditions. We find that the viscous heating in the disk formed around the central black hole powers an outflow. For rapidly rotating models, the explosion energy is $\gtrsim 3\times10^{51}$ erg, which is comparable to or larger than that of typical stripped-envelope supernovae, indicating that a fraction of such supernovae may be explosions powered by black-hole accretion disks. The explosion energy is still increasing at the end of the simulations with a rate of $>10^{50}$ erg/s, and thus, it may reach $\sim10^{52}$ erg. The nucleosynthesis calculation shows that the mass of $^{56}$Ni amounts to $\gtrsim 0.1M_\odot$, which, together with the high explosion energy, satisfies the required amount for broad-lined type Ic supernovae. The moderately rotating models predict small ejecta mass of order $0.1M_\odot$ and explosion energy of $\lesssim 10^{51}$ erg. Due to the small ejecta mass, these models may predict a short-timescale transient with the rise time 3$-$5 d. It can lead to a bright ($\sim10^{44}$ erg/s) transient like superluminous supernovae in the presence of dense massive circum-stellar medium. Irrespective of the models, the lowest value of the electron fraction of the ejecta is $\gtrsim 0.4$, and thus, the synthesis of heavy $r$-process elements is not found in our calculation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源