论文标题

用于计算第一类的完整椭圆积分的数值算法的开源实现

Open Source Implementations of Numerical Algorithms for Computing the Complete Elliptic Integral of the First Kind

论文作者

Zhang, Hong-Yan, Jiang, Wen-Juan

论文摘要

第一类(CEI-1)的完整椭圆积分在数学,物理和工程中起着重要作用。没有简单的计算公式,因此数值算法对于应对所涉及的实际问题至关重要。数值解决方案的商业实现,例如功能\ lstinline | elliptick |和\ lstinline | elliptick |分别由MATLAB和Mathematica提供的基于$ \ Mathcal {k} _ {\ Mathrm {cs}}}(m)$,而不是通常的形式的$ k(k)$,使得$ \ mathcal {k} _ {\ mathrm {cs {cs}}}(cs}}}(k^2)为了避免使用商业软件的潜在风险以及由于未知因素而导致的可能限制,有必要为CEI-1计算开源实现。在本文中,通过自上而下的策略详细讨论了无限系列方法,算术几何平均值(AGM)方法,高斯 - 奇比赛方法和高斯 - legendre方法。用于计算CEI-1的四种关键算法经过设计,经过验证,验证和测试,可以在R \&D中使用并正确使用。数值结果表明,我们基于$ k(k)$的开源实现等于基于$ \ mathcal {k} _ {\ mathrm {cs}}}(m)$的商业实现。在STEM教育和科学计算的意义上,开发的计算正交多项式的一般算法是重要的副产品。

The complete elliptic integral of the first kind (CEI-1) plays a significant role in mathematics, physics and engineering. There is no simple formula for its computation, thus numerical algorithms are essential for coping with the practical problems involved. The commercial implementations for the numerical solutions, such as the functions \lstinline|ellipticK| and \lstinline|EllipticK| provided by MATLAB and Mathematica respectively, are based on $\mathcal{K}_{\mathrm{cs}}(m)$ instead of the usual form $K(k)$ such that $\mathcal{K}_{\mathrm{cs}}(k^2) =K(k)$ and $m=k^2$. It is necessary to develop open source implementations for the computation of the CEI-1 in order to avoid potential risks of using commercial software and possible limitations due to the unknown factors. In this paper, the infinite series method, arithmetic-geometric mean (AGM) method, Gauss-Chebyshev method and Gauss-Legendre methods are discussed in details with a top-down strategy. The four key algorithms for computing CEI-1 are designed, verified, validated and tested, which can be utilized in R\& D and be reused properly. Numerical results show that our open source implementations based on $K(k)$ are equivalent to the commercial implementation based on $\mathcal{K}_{\mathrm{cs}}(m)$. The general algorithms for computing orthogonal polynomials developed are significant byproducts in the sense of STEM education and scientific computation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源