论文标题
非障碍物的超级空间,所有可能的例子
The hyperspace of non-blockers of singletons, all the possible examples
论文作者
论文摘要
考虑到公制连续$ x $,是$ x $ $ x $的非空的封闭子空间$ b $,不会阻止x \ setminus b $中的点$ p \,前提是所有$ x $包含$ p $的$ x $的结合,包含$ x \ setminus b $是$ x $的密集setminus b $。 $ x $的所有非空封闭子空间的收集$ b $ a $ b $不会阻止$ x \ setminus b $的任何元素,用$ nb(f_ {1}(x))$表示。在本文中,我们证明,对于每个完全可分离的空间$ z $,存在一个连续$ x $,因此$ z $是同型至$ nb(f_ {1}(x))$。这回答了Camargo,Capulín,Castaneda-Alvarado和Maya的一系列问题。
Given a metric continuum $X$, a nonempty proper closed subspace $B$ of $X$, does not block a point $p\in X\setminus B$ provided that the union of all subcontinua of $X$ containing $p$ and contained in $X\setminus B$ is a dense subset of $X$. The collection of all nonempty proper closed subspaces $B$ of $X$ such that $B$ does not block any element of $X\setminus B$ is denoted by $NB(F_{1}(X))$. In this paper we prove that for each completely metrizable and separable space $Z$, there exists a continuum $X$ such that $Z$ is homeomorphic to $NB(F_{1}(X))$. This answers a series of questions by Camargo, Capulín, Castaneda-Alvarado and Maya.