论文标题

马尔可夫二元性和伯特·安萨兹(Bethe Ansatz)公式,用于半行开放式ASEP

Markov duality and Bethe ansatz formula for half-line open ASEP

论文作者

Barraquand, Guillaume, Corwin, Ivan

论文摘要

使用Markov二元性在整数上满足了整数上的ASEP,我们推断出类似的Markov二元性,以进行半行开放的ASEP和一个段的打开ASEP。这导致了表征模型可观察物的ODE系统的封闭系统。在半行情况下,我们使用Bethe Ansatz解决了ODES系统,并证明了当前$ n $ n $不同空间位置的$ q $ the的积分公式。然后,我们使用此公式在$ \ mathbb r _ {> 0} $上使用Robin类型边界条件确认乘以噪声随机热方程的矩进行预测,并且在Dirichlet边界条件的情况下,我们获得了新的公式。

Using a Markov duality satisfied by ASEP on the integer line, we deduce a similar Markov duality for half-line open ASEP and open ASEP on a segment. This leads to closed systems of ODEs characterizing observables of the models. In the half-line case, we solve the system of ODEs using Bethe ansatz and prove an integral formula for $q$-moments of the current at $n$ distinct spatial locations. We then use this formula to confirm predictions for the moments of the multiplicative noise stochastic heat equation on $\mathbb R_{>0}$ with Robin type boundary condition and we obtain new formulas in the case of a Dirichlet boundary condition.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源