论文标题
RCD(0,n)空间,线性直径较小
RCD(0,N)-spaces with small linear diameter growth
论文作者
论文摘要
在本文中,我们研究了RCD(0,N)空间(修订)基本组的某些结构属性。我们的主要结果概括了Sormani对Riemannian歧管的早期工作,其曲率非负曲率和小线性直径生长。我们证明,如果假设RCD(0,N)空间上的线性直径较小,则经过修订的基本组有限地产生。
In this paper, we study some structure properties on the (revised) fundamental group of RCD(0,N) spaces. Our main result generalizes earlier work of Sormani on Riemannian manifolds with nonnegative Ricci curvature and small linear diameter growth. We prove that the revised fundamental group is finitely generated if assuming small linear diameter growth on RCD(0,N) spaces.