论文标题
面向计划的自主驾驶
Planning-oriented Autonomous Driving
论文作者
论文摘要
现代的自主驾驶系统的特征是按顺序(即感知,预测和计划)按顺序执行的模块化任务。为了执行各种各样的任务并实现高级智能,当代方法要么为单个任务部署独立模型,要么设计具有独立头部的多任务范式。但是,他们可能会遭受累积错误或任务协调不足的困扰。取而代之的是,我们认为应该为追求最终目标(即自动驾驶汽车的计划)设计和优化一个有利的框架。以此为导向,我们重新审视感知和预测中的关键组成部分,并确定任务的优先级,使所有这些任务都有助于计划。我们介绍了统一的自主驾驶(UNIAD),这是一个最新的综合框架,将全栈驾驶任务包含在一个网络中。它是精心设计的,以利用每个模块的优势,并从全球角度提供互补的特征抽象来进行代理交互。与统一的查询接口进行交流,以相互促进计划。我们实例化了具有挑战性的Nuscenes基准。随着广泛的消融,通过在各个方面都超过先前的最先进的哲学来证明使用这种理念的有效性。代码和模型是公开的。
Modern autonomous driving system is characterized as modular tasks in sequential order, i.e., perception, prediction, and planning. In order to perform a wide diversity of tasks and achieve advanced-level intelligence, contemporary approaches either deploy standalone models for individual tasks, or design a multi-task paradigm with separate heads. However, they might suffer from accumulative errors or deficient task coordination. Instead, we argue that a favorable framework should be devised and optimized in pursuit of the ultimate goal, i.e., planning of the self-driving car. Oriented at this, we revisit the key components within perception and prediction, and prioritize the tasks such that all these tasks contribute to planning. We introduce Unified Autonomous Driving (UniAD), a comprehensive framework up-to-date that incorporates full-stack driving tasks in one network. It is exquisitely devised to leverage advantages of each module, and provide complementary feature abstractions for agent interaction from a global perspective. Tasks are communicated with unified query interfaces to facilitate each other toward planning. We instantiate UniAD on the challenging nuScenes benchmark. With extensive ablations, the effectiveness of using such a philosophy is proven by substantially outperforming previous state-of-the-arts in all aspects. Code and models are public.