论文标题
范围:范围学习有效的在线增强
RangeAugment: Efficient Online Augmentation with Range Learning
论文作者
论文摘要
最先进的自动增强方法(例如,自动说明和兰德纳格),用于视觉识别任务,使用大量的增强操作使培训数据多样化。许多增强操作(例如亮度和对比度)的幅度范围是连续的。因此,为了使搜索可用于搜索,这些方法对每个操作使用固定和手动定义的幅度范围,这可能会导致次优政策。为了回答有关每个扩展操作的幅度范围重要性的开放问题,我们引入了范围,使我们能够有效地了解个人和复合增强操作的幅度范围。范围使用基于图像相似性的辅助损失作为控制增强操作幅度范围的量度。结果,范围具有用于搜索,图像相似性的单个标量参数,我们只是通过线性搜索来优化该参数。 Rangeaugment与任何模型无缝集成,并学习模型和特定于任务的增强策略。通过在不同网络的Imagenet数据集上进行了广泛的实验,我们表明,Rangeaugment可以在最新的自动增强方法中实现竞争性能,增加了4-5倍的增强操作。关于语义分割,对象检测,基础模型和知识蒸馏的实验结果进一步显示了范围的有效性。
State-of-the-art automatic augmentation methods (e.g., AutoAugment and RandAugment) for visual recognition tasks diversify training data using a large set of augmentation operations. The range of magnitudes of many augmentation operations (e.g., brightness and contrast) is continuous. Therefore, to make search computationally tractable, these methods use fixed and manually-defined magnitude ranges for each operation, which may lead to sub-optimal policies. To answer the open question on the importance of magnitude ranges for each augmentation operation, we introduce RangeAugment that allows us to efficiently learn the range of magnitudes for individual as well as composite augmentation operations. RangeAugment uses an auxiliary loss based on image similarity as a measure to control the range of magnitudes of augmentation operations. As a result, RangeAugment has a single scalar parameter for search, image similarity, which we simply optimize via linear search. RangeAugment integrates seamlessly with any model and learns model- and task-specific augmentation policies. With extensive experiments on the ImageNet dataset across different networks, we show that RangeAugment achieves competitive performance to state-of-the-art automatic augmentation methods with 4-5 times fewer augmentation operations. Experimental results on semantic segmentation, object detection, foundation models, and knowledge distillation further shows RangeAugment's effectiveness.