论文标题

韦格纳平面图的放松最高度4

Relaxation of Wegner's Planar Graph Conjecture for maximum degree 4

论文作者

Cho, Eun-Kyung, Choi, Ilkyoo, Lidický, Bernard

论文摘要

著名的韦格纳(Wegner)的平面图猜想在平面图$ g $的平方$ g^2 $的色度上宣称上限紧密,具体取决于最高度$δ(g)$ $ g $。猜想解决的唯一情况是,托马森(Thomassen)证明了$δ(g)= 3 $,而Hartke,Jahanbekam和Thomas则独立。对于$δ(g)= 4 $,韦格纳的平面图猜想指出,$ g^2 $的色数最多是9;即使是这个案例,也仍然广泛开放,最近Bousquet,de Meyer,Deschamps和Pierron声称上限为12。 我们采用了一种完全不同的方法,并表明可以通过$δ(g)= 4 $的平面图$ g $的正方形放松,可以通过9种颜色来实现。我们没有要求顶点附近的每种颜色都是唯一的,这相当于$ g^2 $的适当着色,而是寻求$ g $的适当着色,以便最多可以在4级的顶点的附近重复一种颜色,但没有其他地方。

The famous Wegner's Planar Graph Conjecture asserts tight upper bounds on the chromatic number of the square $G^2$ of a planar graph $G$, depending on the maximum degree $Δ(G)$ of $G$. The only case that the conjecture is resolved is when $Δ(G)=3$, which was proven to be true by Thomassen, and independently by Hartke, Jahanbekam, and Thomas. For $Δ(G)=4$, Wegner's Planar Graph Conjecture states that the chromatic number of $G^2$ is at most 9; even this case is still widely open, and very recently Bousquet, de Meyer, Deschamps, and Pierron claimed an upper bound of 12. We take a completely different approach, and show that a relaxation of properly coloring the square of a planar graph $G$ with $Δ(G)=4$ can be achieved with 9 colors. Instead of requiring every color in the neighborhood of a vertex to be unique, which is equivalent to a proper coloring of $G^2$, we seek a proper coloring of $G$ such that at most one color is allowed to be repeated in the neighborhood of a vertex of degree 4, but nowhere else.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源