论文标题
人工智能系统的需求工程:系统地图研究
Requirements Engineering for Artificial Intelligence Systems: A Systematic Mapping Study
论文作者
论文摘要
[上下文]在传统软件系统中,需求工程(RE)活动是良好的和研究的。但是,建立基于人工智能(AI)软件,对系统内部运作有限或没有洞察力,对重新挑战带来了重大挑战。现有文献的重点是使用AI管理RE活动,对AI(RE4AI)的RE研究有限。 [目的]本文研究了当前指定AI系统要求的方法,确定了用于建模需求的可用框架,方法,工具和技术,并发现了现有的挑战和局限性。 [方法]我们进行了一项系统的映射研究,以查找有关当前RE4AI方法的论文。我们确定了43项主要研究,并分析了用于在现实世界中指定和建模需求的现有方法,模型,工具和技术。 [结果]我们发现了现有RE4AI实践的一些挑战和局限性。调查结果强调,当前的RE应用程序无法适应AI系统,并强调需要提供新技术和工具来支持RE4AI。 [结论]我们的结果表明,关于RE4AI的大多数实证研究都集中在自动驾驶,自动驾驶汽车和管理数据要求上,以及伦理,信任和解释性等领域需要进一步研究。
[Context] In traditional software systems, Requirements Engineering (RE) activities are well-established and researched. However, building Artificial Intelligence (AI) based software with limited or no insight into the system's inner workings poses significant new challenges to RE. Existing literature has focused on using AI to manage RE activities, with limited research on RE for AI (RE4AI). [Objective] This paper investigates current approaches for specifying requirements for AI systems, identifies available frameworks, methodologies, tools, and techniques used to model requirements, and finds existing challenges and limitations. [Method] We performed a systematic mapping study to find papers on current RE4AI approaches. We identified 43 primary studies and analysed the existing methodologies, models, tools, and techniques used to specify and model requirements in real-world scenarios. [Results] We found several challenges and limitations of existing RE4AI practices. The findings highlighted that current RE applications were not adequately adaptable for building AI systems and emphasised the need to provide new techniques and tools to support RE4AI. [Conclusion] Our results showed that most of the empirical studies on RE4AI focused on autonomous, self-driving vehicles and managing data requirements, and areas such as ethics, trust, and explainability need further research.