论文标题

特征向量重叠的波动和Wigner矩阵的浆果猜想

Fluctuations of eigenvector overlaps and the Berry conjecture for Wigner matrices

论文作者

Benigni, Lucas, Cipolloni, Giorgio

论文摘要

我们证明,$ n \ times n $ wigner矩阵的一般确定性矩阵和特征向量的二次形式(重叠)的任何有限收集都具有关节高斯波动。这可以看作是浆果随机波的随机基质类似物。

We prove that any finite collection of quadratic forms (overlaps) of general deterministic matrices and eigenvectors of an $N\times N$ Wigner matrix has joint Gaussian fluctuations. This can be viewed as the random matrix analogue of the Berry random wave conjecture.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源