论文标题
通过增强学习近似自主量子误差校正
Approximate Autonomous Quantum Error Correction with Reinforcement Learning
论文作者
论文摘要
自主量子误差校正(AQEC)通过工程耗散保护逻辑QUB,因此规避了频繁,容易出错的测量反馈回路的必要性。玻感代码空间,单光子损耗代表了误差的主要来源,由于其灵活性和可控性,因此有望成为AQEC的候选者。尽管现有的建议证明了AQEC具有玻感代码空间的原则可行性,但这些方案通常基于Knill-Laflamme条件的确切实现,因此需要实现汉密尔顿距离$ D \ geq 2 $。实施此类汉密尔顿的距离需要多个非线性相互作用和控制场,从而使这些方案在实验上具有挑战性。在这里,我们通过放松knill-laflamme条件提出了一个玻色粒代码,以近似AQEC。使用增强学习(RL),我们确定了最佳的骨孔集(以RL代码为代表),令人惊讶的是,该集合由Fock状态$ \ vert 2 \ rangle $和$ \ vert 4 \ rangle $组成。如我们所示,尽管RL代码的性质近似,但仍成功抑制了单光子损失,将其降低到有效超过截止阈值的有效分类过程。因此,它可以为完全误差保护提供一个有价值的构件。误差校正的哈密顿量包括模仿工程耗散的Ancilla系统,完全基于Hamiltonian距离$ d = 1 $,大大降低了模型的复杂性。单位门在RL代码中实现,最大距离$ d_g = 2 $。
Autonomous quantum error correction (AQEC) protects logical qubits by engineered dissipation and thus circumvents the necessity of frequent, error-prone measurement-feedback loops. Bosonic code spaces, where single-photon loss represents the dominant source of error, are promising candidates for AQEC due to their flexibility and controllability. While existing proposals have demonstrated the in-principle feasibility of AQEC with bosonic code spaces, these schemes are typically based on the exact implementation of the Knill-Laflamme conditions and thus require the realization of Hamiltonian distances $d\geq 2$. Implementing such Hamiltonian distances requires multiple nonlinear interactions and control fields, rendering these schemes experimentally challenging. Here, we propose a bosonic code for approximate AQEC by relaxing the Knill-Laflamme conditions. Using reinforcement learning (RL), we identify the optimal bosonic set of codewords (denoted here by RL code), which, surprisingly, is composed of the Fock states $\vert 2\rangle$ and $\vert 4\rangle$. As we show, the RL code, despite its approximate nature, successfully suppresses single-photon loss, reducing it to an effective dephasing process that well surpasses the break-even threshold. It may thus provide a valuable building block toward full error protection. The error-correcting Hamiltonian, which includes ancilla systems that emulate the engineered dissipation, is entirely based on the Hamiltonian distance $d=1$, significantly reducing model complexity. Single-qubit gates are implemented in the RL code with a maximum distance $d_g=2$.