论文标题
二维阳米尔和改变变形属的复兴
Resurgence in 2-dimensional Yang-Mills and a genus altering deformation
论文作者
论文摘要
我们研究了在二维$ su(n)$和$ u(n)$ yang-mills理论上的分区功能的背景下的复兴。在讨论了跨性别理论中跨系列的特性之后,我们为变形理论的动作添加了一个术语。仍然可以准确计算分区函数,并且变形具有分析性继续在确切答案中继续进行有效属参数的效果。在变形理论中,我们发现了新的鞍溶液并研究其特性。在这种情况下,每个鞍座为跨系列造成了渐近系列,可以使用borel-ècalle重新调整来分析。对于变形参数的特定值,我们发现柴郡猫点点,其中跨系列中的渐近序列截断为几个术语。我们还发现分区函数满足的新的偏微分方程,并解释了许多应用程序,包括低阶/低阶复苏。
We study resurgence in the context of the partition function of 2-dimensional $SU(N)$ and $U(N)$ Yang-Mills theory on a surface of genus $h$. After discussing the properties of the transseries in the undeformed theory, we add a term to the action to deform the theory. The partition function can still be calculated exactly, and the deformation has the effect of analytically continuing the effective genus parameter in the exact answer to be non-integer. In the deformed theory we find new saddle solutions and study their properties. In this context each saddle contributes an asymptotic series to the transseries which can be analysed using Borel-Ècalle resummation. For specific values of the deformation parameter we find Cheshire cat points where the asymptotic series in the transseries truncate to a few terms. We also find new partial differential equations satisfied by the partition function, and a number of applications of these are explained, including low-order/low-order resurgence.