论文标题
通过新的神经期望最大化算法深入学习半竞争风险数据
Deep Learning of Semi-Competing Risk Data via a New Neural Expectation-Maximization Algorithm
论文作者
论文摘要
肺癌的预后是死亡的主要原因,仍然是一项复杂的任务,因为它需要量化跨越患者一生的风险因素和健康事件的关联。一个挑战是,一个人的疾病病程涉及非末端(例如疾病进展)和末端(例如死亡)事件,这些事件形成了半竞争关系。我们的动机来自波士顿肺癌研究,这是一项大型肺癌生存队列,该研究研究了风险因素如何影响患者疾病的轨迹。随后在预测神经网络的事件时间结果方面的发展之后,深度学习已成为生存分析中风险预测方法发展的重点领域。但是,已经进行了有限的工作来预测多州或半竞争风险结果,在这种情况下,患者可能会遇到不良事件,例如死亡前的疾病进展。我们提出了一种新型的神经期望最大化算法,以弥合经典统计方法与机器学习之间的差距。我们的算法可以通过具有过渡特异性亚座位的多任务深神经网络对每个状态过渡的非参数基线危害,预测因素的风险函数以及不同转变之间的依赖程度进行估计。我们将我们的方法应用于波士顿肺癌研究,并研究临床和遗传预测因子对疾病进展和死亡率的影响。
Prognostication for lung cancer, a leading cause of mortality, remains a complex task, as it needs to quantify the associations of risk factors and health events spanning a patient's entire life. One challenge is that an individual's disease course involves non-terminal (e.g., disease progression) and terminal (e.g., death) events, which form semi-competing relationships. Our motivation comes from the Boston Lung Cancer Study, a large lung cancer survival cohort, which investigates how risk factors influence a patient's disease trajectory. Following developments in the prediction of time-to-event outcomes with neural networks, deep learning has become a focal area for the development of risk prediction methods in survival analysis. However, limited work has been done to predict multi-state or semi-competing risk outcomes, where a patient may experience adverse events such as disease progression prior to death. We propose a novel neural expectation-maximization algorithm to bridge the gap between classical statistical approaches and machine learning. Our algorithm enables estimation of the non-parametric baseline hazards of each state transition, risk functions of predictors, and the degree of dependence among different transitions, via a multi-task deep neural network with transition-specific sub-architectures. We apply our method to the Boston Lung Cancer Study and investigate the impact of clinical and genetic predictors on disease progression and mortality.