论文标题

全球Weinstein型定理有关哈密顿系统的多个旋转周期解决方案

Global Weinstein Type Theorem on Multiple Rotating Periodic Solutions for Hamiltonian Systems

论文作者

Xing, Jiamin, Yang, Xue, Li, Yong

论文摘要

本文涉及以$ 2N $尺寸凸汉密尔顿系统的多种旋转周期性解决方案的存在。对于符号正交矩阵$ q $,旋转的周期性解决方案的形式为$ z(t+t)= qz(t)$,根据$ q $的结构,可能是周期性,抗周期性,亚谐波或Quasi-periodic的形式。事实证明,在给定的$ q $不变的凸能表面上,至少存在$ n $几何旋转的周期性解决方案。结果,证明,如果对称能表面允许非对称周期性解决方案,则它具有无限的周期轨道。为了证明结果,我们在旋转周期轨道上引入了一个新的索引。

This paper concerns the existence of multiple rotating periodic solutions for $2n$ dimensional convex Hamiltonian systems. For the symplectic orthogonal matrix $Q$, the rotating periodic solution has the form of $z(t+T)=Qz(t)$, which might be periodic, anti-periodic, subharmonic or quasi-periodic according to the structure of $Q$. It is proved that there exist at least $n$ geometrically distinct rotating periodic solutions on a given $Q$ invariant convex energy surface under a pinching condition. As a result, it is proved that if the symmetric energy surface admits a nonsymmetric periodic solution, it has infinitely many periodic orbits. In order to prove the result, we introduce a new index on rotating periodic orbits.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源