论文标题

无IRS辅助细胞大型MIMO系统中的能源效率最大化

Energy Efficiency Maximization in IRS-Aided Cell-Free Massive MIMO System

论文作者

Jin, Si-Nian, Yue, Dian-Wu, Chen, Yi-Ling, Hu, Qing

论文摘要

在本文中,我们考虑了一个智能反射表面(IRS)辅助的大量大量多输入多输出系统,在该系统中,在接入点处的波束成形和IRSS的相移共同优化以最大化能源效率(EE)。为了解决EE最大化问题,我们通过使用二次变换和拉格朗日双变换来提出一种迭代优化算法,以找到最佳的光束成形和相移。但是,所提出的算法遭受了较高的计算复杂性,这在某些实际情况下阻碍了其应用。为此,我们进一步提出了一种基于深度学习的方法,用于联合波束形成和相移设计。具体而言,使用无监督的学习方式对两个阶段的深神经网络进行了离线训练,然后在线部署该网络以预测波束成型和相位偏移。仿真结果表明,与迭代优化算法和遗传算法相比,基于无监督学习的方法具有较高的EE性能和更低的运行时间。

In this paper, we consider an intelligent reflecting surface (IRS)-aided cell-free massive multiple-input multiple-output system, where the beamforming at access points and the phase shifts at IRSs are jointly optimized to maximize energy efficiency (EE). To solve EE maximization problem, we propose an iterative optimization algorithm by using quadratic transform and Lagrangian dual transform to find the optimum beamforming and phase shifts. However, the proposed algorithm suffers from high computational complexity, which hinders its application in some practical scenarios. Responding to this, we further propose a deep learning based approach for joint beamforming and phase shifts design. Specifically, a two-stage deep neural network is trained offline using the unsupervised learning manner, which is then deployed online for the predictions of beamforming and phase shifts. Simulation results show that compared with the iterative optimization algorithm and the genetic algorithm, the unsupervised learning based approach has higher EE performance and lower running time.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源