论文标题
图表的围墙的下限
A simple proof for the lower bound of the girth of graphs $D(n, q)$
论文作者
论文摘要
图形的组成部分$ d(n,q)$为具有$ n $顶点的图中的边数和长度小于$ g $的循环提供了最著名的一般下限。在本文中,我们给出了一个新的,简短的,更简单的证明,证明了$ d(n,q)$中最短周期的长度是$ n + 5 $,当$ n $奇怪,而$ n + 4 $当$ n $均匀。
The components of the graphs $D(n, q)$ provide the best-known general lower bound for the number of edges in a graph with $n$ vertices and no cycles of length less than $g$. In this paper, we give a new, short, and simpler proof of the fact that the length of the shortest cycle appearing in $D(n, q)$ is $n + 5$ when $n$ is odd, and $n + 4$ when $n$ is even.