论文标题
宜本可溶性线性群
IBIS soluble linear groups
论文作者
论文摘要
令$ g $为$ω的有限置换组。$ $ω$的元素元素的订购序列$(ω_1,\ dots,ω_t)$是$ g $的不余额,如果点稳定器是琐碎的,并且没有凸位的稳定器固定在其前辈的稳定器。如果$ g $的所有不遗产基础具有相同的基数,则据说$ g $是ibis组。在本文中,我们对准主要可溶性宜本线性群体进行了分类,我们还描述了nilpotent和metacyclic ibis线性群和ibis线性奇数奇数。
Let $G$ be a finite permutation group on $Ω.$ An ordered sequence $(ω_1,\dots, ω_t)$ of elements of $Ω$ is an irredundant base for $G$ if the pointwise stabilizer is trivial and no point is fixed by the stabilizer of its predecessors. If all irredundant bases of $G$ have the same cardinality, $G$ is said to be an IBIS group. In this paper we give a classification of quasi-primitive soluble irreducible IBIS linear groups, and we also describe nilpotent and metacyclic IBIS linear groups and IBIS linear groups of odd order.