论文标题
DEQ-MPI:具有磁性粒子成像的学习一致性的深度平衡重建
DEQ-MPI: A Deep Equilibrium Reconstruction with Learned Consistency for Magnetic Particle Imaging
论文作者
论文摘要
磁性颗粒成像(MPI)提供了无与伦比的对比度和迹象,用于追踪磁性纳米颗粒。常见的成像过程校准了用于从随后的扫描中重建数据的系统矩阵(SM)。可以通过基于SM同时执行数据一致性并根据图像之前的图像正规化解决方案来解决不良的重建问题。传统手工制作的先验无法捕获MPI图像的复杂属性,而基于学识渊博的先验的最新MPI方法可能会遭受广泛的推理时间或有限的概括性能。在这里,我们介绍了一种基于具有学习数据一致性(DEQ-MPI)的深度平衡模型的新型物理驱动方法,用于MPI重建。 DEQ-MPI通过将神经网络扩展为迭代优化来重建图像,这是受深度学习中展开方法的启发。然而,常规的展开方法在计算上仅限于迭代,导致了非构造解决方案,并且它们使用手工制作的一致性度量可以产生数据分布的次优捕获。 DEQ-MPI改为训练隐式映射以最大程度地提高收敛解决方案的质量,并结合了学习的一致性度量,以更好地说明数据分布。对模拟和实验数据的演示表明,DEQ-MPI达到了最先进的MPI重建方法,可以实现卓越的图像质量和竞争推理时间。
Magnetic particle imaging (MPI) offers unparalleled contrast and resolution for tracing magnetic nanoparticles. A common imaging procedure calibrates a system matrix (SM) that is used to reconstruct data from subsequent scans. The ill-posed reconstruction problem can be solved by simultaneously enforcing data consistency based on the SM and regularizing the solution based on an image prior. Traditional hand-crafted priors cannot capture the complex attributes of MPI images, whereas recent MPI methods based on learned priors can suffer from extensive inference times or limited generalization performance. Here, we introduce a novel physics-driven method for MPI reconstruction based on a deep equilibrium model with learned data consistency (DEQ-MPI). DEQ-MPI reconstructs images by augmenting neural networks into an iterative optimization, as inspired by unrolling methods in deep learning. Yet, conventional unrolling methods are computationally restricted to few iterations resulting in non-convergent solutions, and they use hand-crafted consistency measures that can yield suboptimal capture of the data distribution. DEQ-MPI instead trains an implicit mapping to maximize the quality of a convergent solution, and it incorporates a learned consistency measure to better account for the data distribution. Demonstrations on simulated and experimental data indicate that DEQ-MPI achieves superior image quality and competitive inference time to state-of-the-art MPI reconstruction methods.