论文标题
高维光谱密度基质的统计推断
Statistical inference for high-dimensional spectral density matrix
论文作者
论文摘要
光谱密度矩阵是时间序列分析感兴趣的基本对象,它在多元系统的组件过程之间编码当代和动态线性关系。在本文中,我们为高维环境中的光谱密度矩阵开发了新的推理程序。具体而言,我们引入了一种新的全局测试程序,以测试给定频率和跨对组件索引的跨光谱密度的无效。首次采用高斯近似值和参数bootstrap方法来推断频域中配制的高维参数,并开发了新的技术工具来提供渐近保证的尺寸准确性和功率,以确保全球测试的大小准确性和功率。我们进一步提出了一个多个测试程序,以同时测试给定频率的跨光谱密度的无效。该方法显示用于控制错误的发现率。数值模拟和真实数据图都证明了所提出的测试方法的有用性。
The spectral density matrix is a fundamental object of interest in time series analysis, and it encodes both contemporary and dynamic linear relationships between component processes of the multivariate system. In this paper we develop novel inference procedures for the spectral density matrix in the high-dimensional setting. Specifically, we introduce a new global testing procedure to test the nullity of the cross-spectral density for a given set of frequencies and across pairs of component indices. For the first time, both Gaussian approximation and parametric bootstrap methodologies are employed to conduct inference for a high-dimensional parameter formulated in the frequency domain, and new technical tools are developed to provide asymptotic guarantees of the size accuracy and power for global testing. We further propose a multiple testing procedure for simultaneously testing the nullity of the cross-spectral density at a given set of frequencies. The method is shown to control the false discovery rate. Both numerical simulations and a real data illustration demonstrate the usefulness of the proposed testing methods.