论文标题
森自偶义超级麦克斯韦理论的机制
Sen's Mechanism for Self-Dual Super Maxwell theory
论文作者
论文摘要
在几种基本粒子场景中,自偶会成为基本的自由度。一些示例是$ d = 2 $手性玻色子,$ d = 10 $ type iib超级重力,$ d = 6 $手性张量多重理论。对于这些模型,在Ashoke参议员的工作中提出了一种新颖的变异原则。与自偶像模型的超重力相连,因为该新框架是很奇怪的,可以保证非物理自由度的解耦。我们将这种技术推广到$ d = 4 $ euclidean SpaceTime中的自助式超级麦克斯韦理论,无论是在组成形式主义和超空间中。我们使用流变形式和整体形式的几何工具,因为它们是扩展到超重力的非常强大的几何技术。我们通过选择使用图片更换操作员定义的不同积分形式来显示两种公式之间的等效性。这导致有意义的动作对变异方程式起作用。此外,我们将模型与非动力的重力诺一起将分析稍微扩展到自由案例之外。成熟的自dual超级实力分析将在其他地方介绍。
In several elementary particle scenarios, self-dual fields emerge as fundamental degrees of freedom. Some examples are the $D = 2$ chiral boson, $D = 10$ Type IIB supergravity, and $D = 6$ chiral tensor multiplet theory. For those models, a novel variational principle has been proposed in the work of Ashoke Sen. The coupling to supergravity of self-dual models in that new framework is rather peculiar to guarantee the decoupling of unphysical degrees of freedom. We generalize this technique to the self-dual super Maxwell gauge theory in $D = 4$ Euclidean spacetime both in the component formalism and the superspace. We use the geometric tools of rheonomy and integral forms since they are very powerful geometrical techniques for the extension to supergravity. We show the equivalence between the two formulations by choosing a different integral form defined using a Picture Changing Operator. That leads to a meaningful action functional for the variational equations. In addition, we couple the model to a non-dynamical gravitino to extend the analysis slightly beyond the free case. A full-fledged self-dual supergravity analysis will be presented elsewhere.