论文标题

内部功能的临界值

Critical values of inner functions

论文作者

Ivrii, Oleg, Kreitner, Uri

论文摘要

令$ \ mathscr j $为有限熵的内部功能的空间,并具有稳定收敛的拓扑结构。我们证明,\ mathscr j $中的内部函数$ f \在单位磁盘中具有径向限制(实际上是最小的罚款限制),$σ(f')$ a.e.点在单位圆上。我们用它来表明奇异值测量$ν(f)= \ sum_ {c \ in \ text {crit} f}(1- | c |)\cdotΔ__{f(c) + f(c) + f _*(σ(f')$在$ f $中连续差异。我们的分析涉及贝林 - 卡利森集合与角衍生物之间的惊人联系。

Let $\mathscr J$ be the space of inner functions of finite entropy endowed with the topology of stable convergence. We prove that an inner function $F \in \mathscr J$ possesses a radial limit (and in fact, a minimal fine limit) in the unit disk at $σ(F')$ a.e. point on the unit circle. We use this to show that the singular value measure $ν(F) = \sum_{c \in \text{crit } F} (1-|c|) \cdot δ_{F(c)} + F_*(σ(F'))$ varies continuously in $F$. Our analysis involves a surprising connection between Beurling-Carleson sets and angular derivatives.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源